EXERCICE 5A.1 - BAC 2007

On considère la fonction f définie pour tout réel x par :

$$f(x) = e^{2x} - e^x$$

On appelle $\,f\,^{\,\prime}\,$ la fonction dérivée de f et $\,C_{\,f}\,$ la courbe

représentative de f dans le plan rapporté à un repère orthonormal (O, I, J) d'unité graphique 4 cm.

On remarquera que, pour tout réel x, on a :

$$e^{2x} - e^x = e^x (e^x - 1)$$

- **1.** Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$. Que peut-on en déduire pour la courbe C_f ?
- 2. a. Calculer f'(x) pour tout réel x et étudier son signe.
 - **b.** Calculer $f(-\ln 2)$. On détaillera les calculs.
 - **c.** Dresser le tableau de variations de la fonction f.
- 3. Déterminer une équation de la tangente T à la courbe C_f au point d'abscisse 0.
- **4.** Tracer la droite T et la courbe $\,C_{\,f}\,.$

EXERCICE 5A.2 - BAC 2008

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = e^{2x} - e^x - 6$$

On note f 'sa fonction dérivée sur $\mathbb R$.

- **1. a.** Calculer f'(x) et montrer que l'on a pour tout nombre réel $x: f'(x) = e^x(2e^x 1)$
 - **b.** Étudier les variations de la fonction f sur \mathbb{R} .
- **2.** a. Calculer la limite de f en $-\infty$.
 - **b.** Calculer la limite de f en $+\infty$ (on pourra mettre en facteur le nombre e^x dans l'expression de f(x)).
- **3. a.** Dresser le tableau de variations de la fonction f en précisant les limites de f.
 - **b.** Écrire le calcul qui montre que le minimum de la fonction f sur \mathbb{R} est égal à $\frac{-25}{4}$
 - **c.** D'après le tableau de variation de la fonction f, quel est le nombre de solutions sur \mathbb{R} de l'équation (E_1) suivante : (E_1) : f(x) = 0.

EXERCICE 5A.3 - BAC 2007

Soit la fonction f définie sur l'ensemble des nombres réels

$$\mathbb{R} \text{ par}: f(x) = e^{-x} + 2x - 3$$

Soit C_f la courbe représentative de f dans le plan muni d'un repère orthogonal (O, I, J) d'unités graphiques 2 cm en abscisse et 1 cm en ordonnée.

1. Limites aux bornes

- **a.** Déterminer la limite de la fonction f en $+\infty$.
- **b.** Déterminer la limite de la fonction f en $-\infty$.

On pourra établir au préalable que pour tout nombre réel

$$f(x) = e^{-x} (1 + 2xe^x - 3e^x)$$

2. Asymptote oblique

- **a.** Montrer que la droite (d) d'équation y = 2x 3 est asymptote à la courbe C_f .
- **b.** Étudier la position relative de la droite (d) par rapport à la courbe $\,C_{\,f}\,.$

3. Étude des variations de la fonction f

a. Montrer que, pour tout nombre réel x,

$$f'(x) = \frac{2e^x - 1}{e^x}$$

- où f' est la dérivée de la fonction f.
- **b.** Résoudre dans \mathbb{R} l'équation : f'(x) = 0
- **c.** Etudier le signe de la dérivée f ' de la fonction f sur $\mathbb R$
- **d.** Etablir le tableau de variations de la fonction *f*.
- e. Calculer f(1) et déterminer le signe de f(x) pour tout nombre réel x appartenant à l'intervalle [0; 1].
- **4.** Tracer la droite (d) et la courbe C_f dans le repère (O,I,J)

EXERCICE 5A.4 - BAC 2008

Partie A - On note g la fonction définie sur l'ensemble \mathbb{R} des nombres réels par : $g(x) = e^{-x}(-3x+1)+1$

- **1.** Calculer la dérivée g de la fonction g.
- **2.** Étudier le sens de variation de la fonction g sur \mathbb{R} , et dresser le tableau de variation (On ne demande pas les limites de g en $+\infty$ et en $-\infty$).
- 3. Calculer $g\left(\frac{4}{3}\right)$ et en déduire le signe de la fonction g

Partie B - On considère maintenant la fonction f définie sur l'ensemble $\mathbb R$ des nombres réels par :

$$f(x) = e^{-x}(3x+2) + x$$

On note C_f sa courbe représentative dans le repère orthogonal (O, I, J) d'unités graphiques : 3 cm en abscisse et 1 cm en ordonnée).

- 1. Étude des limites.
 - **a.** Déterminer la limite de f en $+\infty$.
 - **b.** Déterminer la limite de f en $-\infty$.
- 2. Étude des variations de f.
 - **a.** Calculer la dérivée f' de la fonction f, et démontrer que, pour tout réel x: f'(x) = g(x)
- **b.** En déduire le tableau de variations de la fonction *f*.
- 3. Démontrer que la droite D d'équation y=x est asymptote à la courbe C_f en $+\infty$, et préciser la position de

la courbe $\,C_f\,$ par rapport à la droite D. (On notera A leur point d'intersection.)

- **4.** Déterminer l'abscisse du point B de la courbe $\,C_f\,$ où la tangente T est parallèle à la droite D.
- 5. Tracer, dans le repère (O, I, J), les droites D et T. Placer les points A et B puis tracer la courbe C_f .

www.mathsenligne.com

FONCTION EXPONENTIELLE

EXERCICES 5A

CORRIGE – LA MERCI – MONTPELLIER – M. QUET EXERCICE 5A.1 - BAC 2007

On considère la fonction f définie pour tout réel x par :

$$f(x) = e^{2x} - e^x$$

On appelle f' la fonction dérivée de f et C_f la courbe représentative de f dans le plan rapporté à un repère orthonormal (O, I, J) d'unité graphique 4 cm. On remarquera que, pour tout réel x, on a :

$$e^{2x} - e^x = e^x (e^x - 1)$$

1.
$$\lim_{x \to +\infty} e^x = +\infty$$
 et $\lim_{x \to +\infty} e^x - 1 = +\infty$

$$\Rightarrow$$
 par produit : $\lim_{x \to +\infty} f(x) = +\infty$

$$\lim_{x \to -\infty} e^x = 0^+ \text{ et } \lim_{x \to -\infty} e^x - 1 = -1$$

$$\rightarrow$$
 par produit : $\lim_{x \to -\infty} f(x) = 0$

L'axe des abscisses d'équation : y = 0 est asymptote à la courbe C_f en $+\infty$ et en $-\infty$.

2. a.

f est dérivable en tant que composée de fonctions exponentielles.

$$\forall x \in \mathbb{R}, \ f'(x) = 2e^{2x} - e^x = e^x (2e^x - 1)$$

$$\forall x \in \mathbb{R}, e^x > 0$$

$$\forall x \in \mathbb{R}, 2e^x - 1 > 0 \iff e^x > \frac{1}{2} \iff x > \ln \frac{1}{2}$$

Si
$$x > -\ln 2 : f'(x) > 0$$

b.
$$f(-\ln 2) = e^{-2\ln 2} - e^{-\ln 2} = e^{\ln 2^{-2}} - e^{\ln \frac{1}{2}}$$

$$f(-\ln 2) = e^{\ln \frac{1}{4}} - e^{\ln \frac{1}{2}} = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$$

c. Tableau de variations de la fonction *f*.

x		$-\ln 2$	v	$+\infty$
f'(x)	_	ф	+	
f(x)	0	$-\frac{1}{4}$		≠ +∞

3. Equation de la tangente T à la courbe $\,C_{\,f}\,$ au point

d'abscisse 0 :
$$T: y = f'(0)(x-0) + f(0)$$

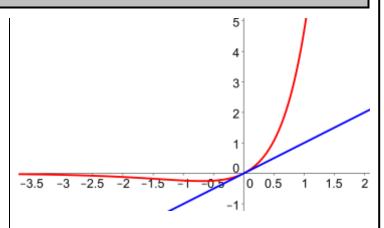
$$f'(0) = 2e^{2\times 0} - e^0 = 2 - 1 = 1$$

$$f(0) = e^{2 \times 0} - e^{0} = 1 - 1 = 0$$

Donc:
$$T: y = 1(x-0)+0$$

$$T: y = x$$

4. Tracer la droite T et la courbe C_f .



EXERCICE 5A.2 - BAC 2008

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = e^{2x} - e^x - 6$$

On note f' sa fonction dérivée sur \mathbb{R} .

1. a. *f* est dérivable en tant que composée de fonctions exponentielles.

$$\forall x \in \mathbb{R}, \ f'(x) = 2e^{2x} - e^x = e^x (2e^x - 1)$$

b. Étudier les variations de la fonction f sur $\mathbb R$.

$$\forall x \in \mathbb{R}, e^x > 0$$

$$\forall x \in \mathbb{R}, 2e^x - 1 > 0 \iff e^x > \frac{1}{2} \iff x > \ln \frac{1}{2}$$

Si
$$x > -\ln 2 : f'(x) > 0$$

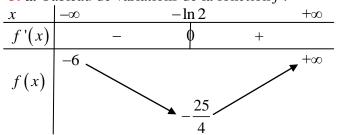
2. a.
$$\lim_{x \to -\infty} e^x = \lim_{x \to -\infty} e^{2x} = 0^+$$

$$\Rightarrow$$
 par somme : $\lim_{x \to -\infty} f(x) = -6$

b.
$$\lim_{x \to +\infty} e^x = \lim_{x \to +\infty} e^{2x} = +\infty$$

$$\rightarrow$$
 par somme : $\lim_{x \to +\infty} f(x) = +\infty$

3. a. Tableau de variations de la fonction f:



b. Minimum de la fonction f sur \mathbb{R} :

$$f(-\ln 2) = e^{-2\ln 2} - e^{-\ln 2} - 6 = e^{\ln 2^{-2}} - e^{\ln \frac{1}{2}} - 6$$

$$f(-\ln 2) = e^{\ln \frac{1}{4}} - e^{\ln \frac{1}{2}} - 6 = \frac{1}{4} - \frac{1}{2} - \frac{24}{4} = -\frac{25}{4}$$

c. Solutions sur \mathbb{R} de l'équation (E_1) : f(x) = 0:

Si
$$x \in]-\infty; -\ln 2] : f(x) < 0$$

La fonction f est continue et strictement croissante

sur
$$\left[-\ln 2; +\infty\right[, f\left(-\ln 2\right) = -\frac{25}{4} \text{ et } \lim_{x \to +\infty} f\left(x\right) = +\infty$$

D'après le théorème de la bijection, la fonction s'annule une unique fois sur $[-\ln 2; +\infty]$.

EXERCICE 5A.3 - BAC 2007

Soit la fonction f définie sur l'ensemble des nombres réels \mathbb{R} par : $f(x) = e^{-x} + 2x - 3$

Soit C_f la courbe représentative de f dans le plan muni d'un repère orthogonal (O, I, J) d'unités graphiques 2 cm en abscisse et 1 cm en ordonnée.

1. Limites aux bornes

a.
$$\lim_{x \to +\infty} e^{-x} = 0$$
 et $\lim_{x \to +\infty} 2x - 3 = +\infty$

Par somme : $\lim_{x \to +\infty} f(x) = +\infty$

b.
$$f(x) = e^{-x} + 2x - 3 = e^{-x} (1 + 2xe^x - 3e^x)$$

$$\lim_{x \to -\infty} x^n e^x = 0 \text{ donc } \lim_{x \to -\infty} 2x e^x = 0$$

$$\lim_{x \to -\infty} e^x = 0 \text{ par somme: } \lim_{x \to -\infty} \left(1 + 2xe^x - 3e^x \right) = 1$$

$$\lim_{x \to -\infty} e^{-x} = +\infty \text{ , par produit : } \lim_{x \to -\infty} f(x) = +\infty$$

2. Asymptote oblique

a. Soit la droite (*d*) d'équation
$$y = 2x - 3$$
:

$$\lim_{x \to +\infty} f(x) - (2x - 3) = \lim_{x \to +\infty} e^{-x} = 0^{+}$$

Donc la droite (d) est asymptote à la courbe (C) au voisinage de $+\infty$.

b. La différence étant positive car égale à e^{-x} , la courbe C_f est toujours au-dessus de la droite (d).

3. Étude des variations de la fonction f

a. f est dérivable en tant que composée de fonctions exponentielles.

$$\forall x \in \mathbb{R}, f'(x) = -e^{-x} + 2 = -\frac{1}{e^x} + 2 = \frac{-1 + 2e^x}{e^x}$$

b. Résoudre dans \mathbb{R} l'équation d'inconnue x:

$$f'(x) = 0 \Leftrightarrow -1 + 2e^x = 0 \Leftrightarrow e^x = \frac{1}{2}$$

$$\Leftrightarrow \ln(e^x) = \ln\frac{1}{2} \Leftrightarrow x = -\ln 2$$

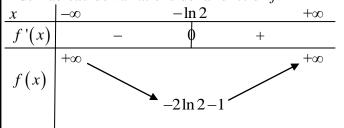
c. Signe de la dérivée f' sur \mathbb{R} :

$$f'(x) > 0 \Leftrightarrow -1 + 2e^x > 0 \Leftrightarrow e^x > \frac{1}{2}$$

$$\Leftrightarrow x > -\ln 2$$

⇒Si
$$x \in]-\ln 2; +\infty[: f'(x)>0$$

d. Tableau de variations de la fonction f.



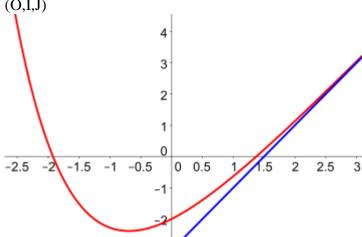
$$f(-\ln 2) = e^{\ln 2} + 2 \times (-\ln 2) - 3 = 2 - 2\ln 2 - 3$$

 $f(-\ln 2) = -2\ln 2 - 1$

e.
$$f(1) = e^{-1} + 2 \times 1 - 3 = e^{-1} - 1$$

f est strictement croissante sur [0;1] et f(1) < 0donc $\forall x \in [0;1] : f(x) < 0$

4. Tracer la droite (d) et la courbe C_f dans le repère (O,I,J)



EXERCICE 5A.4 - BAC 2008

Partie A - On note g la fonction définie sur l'ensemble \mathbb{R} des nombres réels par : $g(x) = e^{-x}(-3x+1)+1$

1. g est dérivable en tant que composée de fonctions exponentielles et de fonctions polynomiales.

$$\forall x \in \mathbb{R}, \ g'(x) = -e^{-x}(-3x+1) + e^{-x} \times (-3)$$
$$g'(x) = e^{-x}(3x-1) + e^{-x} \times (-3) = e^{-x}(3x-4)$$

2. Sens de variation de la fonction g sur \mathbb{R} :

$$\forall x \in \mathbb{R}, e^{-x} > 0 \text{ et } 3x - 4 > 0 \iff x > \frac{4}{3}$$

Donc si
$$x > \frac{4}{3}$$
, alors $g'(x) > 0$

Tableau de variation (On ne demande pas les limites de g en $+\infty$ et en $-\infty$) :

X		$\frac{4}{3}$		$+\infty$
g'(x)	_	φ	+	
g(x)		$g\left(\frac{4}{3}\right)$		▼

3.
$$g\left(\frac{4}{3}\right) = e^{-\frac{4}{3}}\left(-3 \times \frac{4}{3} + 1\right) + 1 = e^{-\frac{4}{3}}\left(-4 + 1\right) + 1$$

 $g\left(\frac{4}{3}\right) = -3e^{-\frac{4}{3}} + 1 \approx 0.21$

 $g\left(\frac{4}{3}\right) > 0$ donc l'étude de la fonction g sur les

intervalles $\left] -\infty; \frac{4}{3} \right]$ et $\left[\frac{4}{3}; +\infty \right]$ permet d'affirmer

que $\forall x \in \mathbb{R}, g(x) > 0$.

Partie B - On considère maintenant la fonction f définie sur l'ensemble $\mathbb R$ des nombres réels par :

$$f(x) = e^{-x}(3x+2) + x$$

On note C_f sa courbe représentative dans le repère orthogonal (O, I, J) d'unités graphiques : 3 cm en abscisse et 1 cm en ordonnée).

1. Étude des limites.

a.
$$f(x) = 3xe^{-x} + 2e^{-x} + x = 3\frac{x}{e^x} + 2e^{-x} + x$$

Or
$$\forall n \in \mathbb{N}$$
, $\lim_{x \to +\infty} \frac{x^n}{e^x} = 0$ donc $\lim_{x \to +\infty} \frac{x}{e^x} = 0$

$$\lim_{x \to +\infty} e^{-x} = 0 \text{ et } \lim_{x \to +\infty} x = +\infty$$

Par somme :
$$\lim_{x \to +\infty} f(x) = +\infty$$

la limite de f en $+\infty$.

b. Déterminer la limite de f en $-\infty$.

2. Étude des variations de f.

- **a.** Calculer la dérivée f' de la fonction f, et démontrer que, pour tout réel x: f'(x) = g(x)
- **b.** En déduire le tableau de variations de la fonction *f*.
- 3. Démontrer que la droite D d'équation y=x est asymptote à la courbe C_f en $+\infty$, et préciser la position de la courbe C_f par rapport à la droite D.

(On notera A leur point d'intersection.)

- **4.** Déterminer l'abscisse du point B de la courbe $\,C_f\,$ où la tangente T est parallèle à la droite D.
- **5.** Tracer, dans le repère (O, I, J), les droites D et T. Placer les points A et B puis tracer la courbe C_f .